1 research outputs found

    Quantitative Methods for Optimizing Patient Outcomes in Liver Transplantation

    Full text link
    Liver transplantation continues to be the gold standard for treating patients with end-stage liver diseases. However, despite the huge success of liver transplantation in improving patient outcomes, long term graft survival continues to be a major problem. The current clinical practice in the management of liver transplant patients is centered around immunosuppressive multidrug regimens. Current research has been focusing on phenotypic personalized medicine as a novel approach in the optimization of immunosuppression, a regressional math modeling focusing on individual patient dose and response using specific markers like transaminases. A prospective area of study includes the development of a mechanistic computational math modeling for optimizing immunosuppression to improve patient outcomes and increase long-term graft survival by exploring the intricate immune/drug interactions to help us further our understanding and management of medical problems like transplants, autoimmunity, and cancer therapy. Thus, by increasing long-term graft survival, the need for redo transplants will decrease, which will free up organs and potentially help with the organ shortage problem promoting equity and equal opportunity for transplants, as well as decreasing the medical costs associated with additional testing and hospital admissions. Although long-term graft survival remains challenging, computational and quantitative methods have led to significant improvements. In this article, we review recent advances and remaining opportunities. We focus on the following topics: donor organ availability and allocation with a focus on equity, monitoring of patient and graft health, and optimization of immunosuppression dosing.Comment: 2 figures, including a graphical abstrac
    corecore